Q:

What is the LCM of 150 and 14?

Accepted Solution

A:
Solution: The LCM of 150 and 14 is 1050 Methods How to find the LCM of 150 and 14 using Prime Factorization One way to find the LCM of 150 and 14 is to start by comparing the prime factorization of each number. To find the prime factorization, you can follow the instructions for each number here: What are the Factors of 150? What are the Factors of 14? Here is the prime factorization of 150: 2 1 × 3 1 × 5 2 2^1 × 3^1 × 5^2 2 1 × 3 1 × 5 2 And this is the prime factorization of 14: 2 1 × 7 1 2^1 × 7^1 2 1 × 7 1 When you compare the prime factorization of these two numbers, you want to look for the highest power that each prime factor is raised to. In this case, there are these prime factors to consider: 2, 3, 5, 7 2 1 × 3 1 × 5 2 × 7 1 = 1050 2^1 × 3^1 × 5^2 × 7^1 = 1050 2 1 × 3 1 × 5 2 × 7 1 = 1050 Through this we see that the LCM of 150 and 14 is 1050. How to Find the LCM of 150 and 14 by Listing Common Multiples The first step to this method of finding the Least Common Multiple of 150 and 14 is to begin to list a few multiples for each number. If you need a refresher on how to find the multiples of these numbers, you can see the walkthroughs in the links below for each number. Let’s take a look at the multiples for each of these numbers, 150 and 14: What are the Multiples of 150? What are the Multiples of 14? Let’s take a look at the first 10 multiples for each of these numbers, 150 and 14: First 10 Multiples of 150: 150, 300, 450, 600, 750, 900, 1050, 1200, 1350, 1500 First 10 Multiples of 14: 14, 28, 42, 56, 70, 84, 98, 112, 126, 140 You can continue to list out the multiples of these numbers as long as needed to find a match. Once you do find a match, or several matches, the smallest of these matches would be the Least Common Multiple. For instance, the first matching multiple(s) of 150 and 14 are 1050, 2100, 3150. Because 1050 is the smallest, it is the least common multiple. The LCM of 150 and 14 is 1050. Find the LCM of Other Number Pairs Want more practice? Try some of these other LCM problems: What is the LCM of 61 and 139? What is the LCM of 43 and 145? What is the LCM of 45 and 36? What is the LCM of 125 and 13? What is the LCM of 22 and 11?